Список разделов



Поиск
введите слово для поиска
расширенный поиск




Календарь
<Ноябрь 2017>
ПнВтСрЧтПтСбВс
  12345
6789101112
13141516171819
20212223242526
27282930   
ГлавнаяВходРегистрацияПоследние статьиПоискКонтакты
   

Фотонные слои сортируют свет для раскалённого генератора

Какой вы знаете путь прямого преобразования теплоты сгорания топлива в электричество? Без промежуточной механической работы? Наверняка вы скажете – термопары. Однако есть ещё один способ, куда менее известный, но, вероятно, намного более перспективный.

Ещё в 1960-х и в 1970-х годах исследователи в разных странах пробовали создать компактные генераторы для космической техники на основе довольно необычного принципа. Тогда что-то не получилось. И ведь, казалось бы, в своей основе идея-то гениально проста. Но для того, чтобы "простота" эта реально заработала, потребовались современные технологии.

В наши дни давнюю мысль, но на этот раз применительно к технике земной – к автомобилям, реанимировали физики из Массачусетского технологического института (MIT), а потому пора с ней (мыслью) познакомиться ближе.

Берём сравнительно небольшое количество топлива, сжигаем его равномерно и спокойно, и нагреваем с его помощью тело-излучатель. Что называется "до белого каления". А точнее (как в нынешнем проекте) — до 1227 градусов по Цельсию.

Излучаемый телом очень яркий свет мы направляем на фотодиод – "солнечную батарею", которая и даёт нам ток. И никакого Солнца не нужно. Потому "солнечная" – в кавычках.

Принцип работы термофотоэлектрического генератора (иллюстрация с сайта lees.mit.edu).

Принцип работы термофотоэлектрического генератора (иллюстрация с сайта lees.mit.edu).

Чтобы такая система была не просто работоспособной, но ещё и обладала высоким КПД, исследователям MIT пришлось воспользоваться самыми последними достижениями в физике фотонных кристаллов.

Тут нужно напомнить, что это такое. Фотонные кристаллы — это периодические (наподобие слоёного пирога) структуры из различных материалов, слои в которых обладают толщиной, сопоставимой с длиной волны света (к примеру, света видимого).

Электронная микрофотография "слоёного пирога" фотонного кристалла, выступающего в данном устройстве в качестве светового фильтра (фото с сайта lees.mit.edu).

Электронная микрофотография "слоёного пирога" фотонного кристалла, выступающего в данном устройстве в качестве светового фильтра (фото с сайта lees.mit.edu).
Такие периодические структуры обладают необычными оптическими свойствами, отличными от оптических свойств материалов, их составляющих. К примеру, фотонные кристаллы могут пропускать через себя определённые частоты волн (почти без задержки, как необычайно прозрачные тела), но при этом отражать, словно самое лучшее зеркало, другие волны.

Вообще, фотонные кристаллы в оптике сравнивают с полупроводниками в мире электроники и полупроводниковыми приборами, на них основанными. Применительно к фотонным кристаллам можно говорить о разрешённых и запрещённых энергетических зонах, наподобие таких зон в полупроводниках. Фотонные кристаллы могут быть световыми "проводниками", "диэлектриками" и "полупроводниками", где вместо тока – фотоны.

Теперь вернёмся к проекту MIT. Сразу видно, что при нагреве обычного тела и при использовании обычной фотоэлектрической панели мы получим невысокую эффективность. И вот как-то профессор Джон Кассакиан (John Kassakian), директор лаборатории электромагнитных и электронных систем MIT (Laboratory for Electromagnetic and Electronic Systems — LEES), собрал своих коллег и сказал: "А почему бы нам не приспособить для сортировки волн фотонные кристаллы? У них же есть как раз нужные нам свойства!".

Ну, возможно, начиналось всё не совсем так. Но результат таков: именно в лаборатории LEES сейчас полным ходом идёт отработка высокоэффективной термофотоэлектрической системы. И уже созданы первые работающие прототипы таких преобразователей.

Исследователи решили подобрать подходящий фотонный кристалл в качестве излучателя света. Тут подошёл так называемый двухмерный фотонный кристалл, со структурой поверхности, похожей по виду на пчелиные соты. Материал – тугоплавкий сплав на основе вольфрама.

Расчётная (светло-синий цвет) и измеренная (тёмно-синий) характеристика фильтра. Шкала внизу – длины волн в микронах, шкала слева — светопропускание (иллюстрация с сайта lees.mit.edu).

Расчётная (светло-синий цвет) и измеренная (тёмно-синий) характеристика фильтра. Шкала внизу – длины волн в микронах, шкала слева — светопропускание (иллюстрация с сайта lees.mit.edu).

Соты эти обладают поперечником и глубиной "колодца", сопоставимыми с длиной волны видимого света. Точнее, эти два размера рассчитаны таким образом, что при нагреве тела они поощряют излучение на определённых частотах и подавляют – излучение других волн.

А ведь обычное нагретое тело светит более-менее равномерно в широком диапазоне частот, которые (разные частоты) полностью утилизировать было бы затруднительно.

Излучатель этот, к слову, сделан в виде цилиндра. Вокруг него располагается солнечная батарея. Она тоже не вполне привычная. Авторы проекта выполнили её на основе антимонида галлия.

Но главная изюминка проекта – это промежуточный цилиндр, установленный между цилиндром-излучателем и цилиндром — "солнечной" панелью.

Промежуточный цилиндр этот также представляет собой фотонный кристалл, так называемый одномерный. Составлен он из множества чередующихся слоёв кремния (толщиной по 170 нанометров) и диоксида кремния (390 нанометров).

Этот фотонный кристалл работает как замечательно точный фильтр: волны с длиной ниже 1,7 микрон (эта величина была определена, исходя из параметров фотоэлектрического преобразователя) он пропускает к батарее, а более длинные волны — отражает назад, к излучателю.

Сотоподобная структура поверхности вольфрамового излучателя – фотонного кристалла. Справа: сравнение характеристики излучения "просто" вольфрама (синий цвет) и фотонного кристалла на его основе (красный). Шкала внизу – длины волн в микронах, шкала слева – коэффициент излучения (иллюстрации с сайта lees.mit.edu).

Сотоподобная структура поверхности вольфрамового излучателя – фотонного кристалла. Справа: сравнение характеристики излучения "просто" вольфрама (синий цвет) и фотонного кристалла на его основе (красный). Шкала внизу – длины волн в микронах, шкала слева – коэффициент излучения (иллюстрации с сайта lees.mit.edu).

Тем самым достигается двойная выгода, повышающая общий КПД системы: к фотодиоду проходят частоты, которые наиболее эффективно им "перевариваются" и превращаются в электрический ток, а отражённый фильтром в обратную сторону свет помогает поддерживать высокую температуру центрального тела — излучателя.

Проходящее к фотопреобразователю, но всё-таки не превращённое в ток, излучение приводит к нагреву фотодиода, так что его ещё приходиться охлаждать. Это – одна из основных проблем проекта.

И всё равно, исходя из расчётов и результатов первых опытов с экспериментальными установками, авторы проекта говорят, что в теории таким способом можно превращать энергию топлива в электричество с эффективностью до 40-50%, что, пожалуй, выше суммарного КПД типичного ДВС, работающего в паре с обычным электрогенератором.

Таким образом, используя нагретое тело, излучающее, по большей мере, на "правильных" частотах, плюс фильтр, пропускающий к батарее лишь волны, эффективно преобразовываемые ею в ток, и являющийся также зеркалом для других волн, да саму батарею из высокоэффективных материалов, авторы добились удивительных параметров.

Они говорят, что такие установки, конечно, не заменят обычные двигатели под капотами автомобилей, но вот в качестве генератора для бортовой сети – были бы идеальны. Судите сами – никаких движущихся частей. Равномерное эффективное сгорание топлива. Бесшумность. Высокий КПД.

Сравнение КПД термофотопреобразователя: 1 – на основе обычного нагретого тела и фотоячейки; 2 – то же, но с промежуточным фильтром частот; 3 – с фильтром и селективным излучателем на основе фотонного кристалла; 4 – то же, но с идеальным фильтром. Шкала внизу – температура нагрева излучателя в Кельвинах, шкала слева – КПД (иллюстрация с сайта lees.mit.edu).

Сравнение КПД термофотопреобразователя: 1 – на основе обычного нагретого тела и фотоячейки; 2 – то же, но с промежуточным фильтром частот; 3 – с фильтром и селективным излучателем на основе фотонного кристалла; 4 – то же, но с идеальным фильтром. Шкала внизу – температура нагрева излучателя в Кельвинах, шкала слева – КПД (иллюстрация с сайта lees.mit.edu).

Такие генераторы могли бы давать ток автомобилю на стоянке, так, чтобы не приходилось гонять двигатель. В холод лишнее сбрасываемое фотоячейкой тепло пригодилось бы для обогрева салона, а в жару такой генератор мог бы с минимальными затратами обеспечивать током кондиционер.

Особенно привлекательна такая система для магистральных тягачей. Ведь крутить их огромные моторы почти вхолостую, лишь чтобы обогреть кабину или подзарядить аккумуляторы – слишком накладно и неэффективно.

Ну и, конечно, в качестве дополнительного генератора для гибридных авто такая термофотосистема оказалась бы очень полезной.

Кстати, разу уж вспомнили про гибриды. Один из лидеров в этой области – компания Toyota — по удивительному совпадению является одним из спонсоров данного проекта MIT.

Но вот какого-либо решения о применении термофотогенератора на машинах японцы, мол, ещё не принимали. Не пришло время? Или Toyota не хочет слишком рано волновать конкурентов?

Статья о науки и техники получена: Membrana.ru




Похожие статьи


1 : Оценка инвестиционных проектов с использованием дисконтирования денежных потоков
Автор: Ирина Дьяконова Источник: "Финансовый директор" (посмотреть все статьи)Данная статья посвящена расчетам основных показателей эффективности инвестиционных проектов, рассчитываемых с учетом фактора времени, а также вопросам, возникающим при расч...

2 : Как оценивать эффективность инвестиций в бизнес?
Автор: Гаптрахман Махмутов © ИА Клерк.Ру, аналитический отдел (посмотреть все статьи)Каждый проект от идеи до начала его внедрения последовательно проходит, как правило, следующие три этапа: разработка общей концепции проекта, разработка бизнес-...

3 : Google Webma статистика сайта
Сервис поисковой системы Google для анализа интернет-сайтов – Google Webmaster Tools – позволяет не только отслеживать индексацию ресурса поисковой машиной, наличие ошибок на страницах своего сайта или удалять определенные страницы из ...

4 : Базовые принципы волн Эллиотта
Теория Волн Эллиотта является собранием сложных методов. Приблизительно 60 процентов этих методов вполне ясные и удобные для использования. Другие 40 процентов являются трудными для определения, особенно для новичков. Практический и консервативный подход

5 : Анализ продвижения сайта
Для продвижения сайта в сети каждым вэб-мастером используются свои методы. Кто-то оптимизирует сайт для поисковых систем, кто-то меняется ссылками, кто-то покупает рекламу в интернет, кто-то занимается пиаром или вирусным маркетингом, кто-то создает экскл

Рейтинг: 3.2/5 (23 голоса)

Последние статьи


1: Автоматическая сверка счетов-фактур – новые возможности «1С:Бухгалтерии 8» ред. 3.0
2: Возможности CRM в 1С «Управление торговлей»
3: Настройка отчетов 1С
4: Как отразить доп. расходы в 1С?
5: Взаимозачет в 1С



Последние новости


Делец в Удмуртии на госденьги открыл нарколабораторию - УФСБ
МОСКВА, 2 ноя - РИА Новости. Следствие заподозрило жителя Удмуртии в организации нарколаборатории на полученные от государства деньги, сообщает в пятн...

Сотрудница томского вуза продавала героин около общежития

ТОМСК, 2 ноя – РИА Новости, Сергей Леваненков. Полиция задержала 58-летнюю томичку при попытке продать героин, возбуждено уголовное дело, сообщи...

Молодежную премию наноиндустрии получил автор технологии для наркоза

© РИА Новости. Сергей ПятаковМОСКВА, 1 ноя - РИА Новости. Лауреатом Российской молодежной премии в области наноиндустрии 2012 года стал заместитель ге...

Жители еще одного мексиканского города взялись за борьбу с наркомафией

МЕХИКО, 2 ноя - РИА Новости, Дмитрий Знаменский. Жители города Олинала в мексиканском штате Герреро взяли в руки оружие, чтобы противостоять попыткам ...

Бразильские студенты получали наркотики по специально вырытому туннелю

© РИА Новости. Артур ГабдрахмановМЕХИКО, 2 ноя - РИА Новости, Дмитрий Знаменский. Оригинальный способ доставки наркотиков в университет крупнейшего бр...


Послать ссылку на этот обзор другу по ICQ или E-Mail:


Разместить у себя на ресурсе или в ЖЖ:


На любом форуме в своем сообщении: